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ABSTRACT

G. J. van der Maas' expression for the limiting envelope of

the excitation coefficients of a Dolph array as the number of elements

is indefinitely increased is derived from the "ideal space factor"

function, cos w i u - A . The envelope is:

ge(p, A) = TrA; [
iA 2_p

where cosh wA is the side lobe ratio, and p is a variable running from

-w to w. An envelope for a 40 db side lobe ratio is calculated and com-

pared with the actual Dolph coefficients in a 24 element 40 db array.



I. INTRODUCTION

Ever since C. L. Dolph developed a method for calculating linear

arrays with uniform side lobes I other workers 3,4 in the field have
endeavored to perfect this method from the point of view of enhancing
the neatness of the expressions and of reducing the labor of the calcu-
lations. In particular it has been observed that, for a given side lobe
ratio, the excitation coefficient values when plotted with respect to
the (normalized) displacement of the corresponding element from the
center of the array tend to lie on the same smooth curve (hereafter called
the envelope of the excitation coefficients) as M, the total number of
elements, is increased. The tendency of the coefficient values to lie on
the same envelope is defective only near the ends of the array. The end
elements themselves do not appear to be related to the envelope at all
and, under some conditions, attain values considerably higher than those
of the neighboring elements.

G. J. van der Maas has announced a simple analytic expression for
4this envelope , which expression was quoted in the abstract. A recent

study 5 of line sources has provided a presumably alternative approach to

this same problem by introducing the function cos rf u - A2 which has a
main lobe of adjustable height and an infinite number of equal side lobes.
This function is known as the "ideal space factor" and, by its use, the
envelope of the Dolph coefficients can be very easily derived. The pur-
pose of this memorandum is to make this derivation.

1. C. L. Dolph, Proc. Inst. Radio Engrs. 34, 335-348 (June 1946).
2. D. Barbiere, Proc. Inst. Radio Engrs. 40, 78-82 (January 1952).
3. R. J. Stegen, "Excitation Coefficients and Beamwidths of Tschebyscheff

Arrays. " Accepted for publication, Proc. Inst. of Radio Engrs.
4. G. J. van der Maas, "A Simplified Calculation for Dolph-Tschebyscheff

Arrays, " Symposium on Microwave Optics, McGill University, Montreal,
Canada (June 1953).

5. T. T. Taylor, "Design of Line Sources for Narrow Beamwidth and Low
Side Lobes, " Hughes Aircraft Company Technical Memorandum No. 316.
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II. THE DOLPH SPACE FACTOR

Let the following definitions be made:

M = number ol elements in array
d = interelement spacing6  R

= Rd = effective length ; R M and l- as M--+ co

k = Zw/k = free space wave number
0 = observer's angle measured from end of array
V = cos 0
* =kdV

The space factor of a Dolph array is then given by:

S = TM.(B cos ) (1)

or by :74 
VSM(V) = TM 1 (B cos (2)

where:

TMl(w) = Tschebyscheff polynomial of order M-1

w = B Cos

B = cosh[~ arc coshI = IZ "of Dolph's original paper

= side lobe voltage ratio

= u" of Dolphs's original paper.
(u is not used again in this sense here)

Equation (1) is most easily explained by Figure 1, which depicts T 4 (w)

and a simple geometrical construction 7 showing how S5(* ) can be ob-

tained. Now for convenience let:

u = Re z = R/ (3)

6. The effective length of a linear array will be defined as the length of
the smooth continuous approximating distribution which produces a
pattern of the same beamwidth as that of the given array. For the
present it is sufficient to observe that R and M are approximately equal.

7. This is not to be confused with the very similar geometrical construc-
tion relating S(G) to S(1').
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These are the same u and z as those of Reference 5; a unit increment in u
corresponds to a standard beamwidth, X/L . In this memorandum u will
be used in preference to z since the real-variable behaviour is emphasized
here. The space factor becomes:

7ru

SM(u) = TM-l (B cos -'). (4)

The zeros, unp of SM(U) occur when the argument fulfills the following

condition:

iru U
n I -rBcos K - cos L l) + (5)

n -l, 2, 3... M-1

It is now necessary to make some remarks about the periodis;.,r

of S M (u). Evidently SM(*) has a period of 2w in * if M is odd and a

period of 4Tr if M is even. In either event, SM(* )j has a period of 2wf

as demanded by array theory . Similarly SM(u) has a period of R

in u. Hence, if M, and therefore R, are increased indefinitely the
period of the space factor in u space increases indefinitely and the
secondary maxima become more and more remote. As M tends to in-
finity, the formula for the finite zeros becomes:

[ I (arc cosh. 21 ( l'n 2 1 -r nit 2z(6'~!' -F - L -e-T) 1- r) ii~ 6

Neglecting higher order terms in I /M:

2 2 1 22()
(arc coshv) ) ( )) (n 2  

2  (7)

Whence:

U (arc cosh Tj . + (n1 (8)

As in Reference 5, the following abbreviation will be made:

iTA = arc cosh T] (9)

8. T. T. Taylor and J, R. Whinnery, Journal of Applied Physics 22,
19-29 (January 1951).
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Whereupon the zeros are given by

u tFAZ + 1) 21 nc } (10)
The profile on the real axis of the eLtire function with these zeros rs
shown in Referdnce 5 to be:

S0Fo(u,A) = cos IT u (11)

Hence the function F (u, A) can be regarded as the limiting form of the

space factor of a Dolph array as the number of elements is inlefinitely
increased. In the subsequent section, this function will be utilized in
obtaining the envelope of tht excitation coefficients.

III. THE ENVELOPE

It has just been shown that the limiting form (as M--o co) of the
space factor of a Dolph array is a very simple function of u. The inverse
Fourier transform of this function should provide some information
relevant to the envelope of the excitation coefficients. Unfortunately this
inverse transform is unbounded since the integral from -co to oo of

[F 0 (u, A)] 2  is unbounded. A simple trick will overcome this difficulty,

however. Write:

F0 (,A =[Cos 7rJu' A?'- cos Tru 2+ cos iru 1
= Fe (u, A) + cos ru (1 )

The inverse transform of Fe (u, A) is bounded and is formally given by:

ge(p , A) = 1-. 00 Fe(u, A) e du (13)
e 2A) J o

This integral is known 9 to give the simple function:

9. Campbell and Foster, Fourier Integral.s, D. Van Nostrand Co., Inc.,
New York, 1948. See transformNo. 871. .
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TA 2 J 1 iA z a] 2< 2

ge(p, A) = (14)

0 p2  2

Here J is a Bessel function of the first kind. Its values for imaginary

argument are conveniently tabulated in Jahnke and Emde 1 0 , and else-
11,12where . The variable p is 2wrx/.L where x measures physical

distance from the center of the distribution, as in Reference 5.

To find the total inverse transform, g0 (p, A), it is necessary to add

to the above the inverse transform of cos ru:
00

gs(P) = cos 7ru eipu du

I fr 0ip

= lim Ir cos Tru eipu du (15)
r --% oo -rsnrpw)

= lim r sin r (p-) +sinr(p+)

r - r(p-w) r(p+-4-l

(p) = 1 [6(p-rr) + 6(p+Tr)] (16)

Thus it is seen that the inverse transform of cos wru is a pair of impulse
functions located at p = -w and at p = 7r. The total inverse transform is
then:

e A 2  2il [iA ir-pj + 1 [6(-T + ](+~ 2 W2
iA4T7 p

go,(p, A) = (17)

2 2
0 p Tr

10. Jahnke and Emde, Tables of Functions, Dover Publications, New
York, 1943. See page 227 et seq.

11. British Association Mathematic Tables, Vols. VI and X, The Uni-
versity Press, Cambridge, 1952.

12. National Bureau of Standards, Tables of J,(z) and JI(z) for Complex

Argument, Columbia University Press, New York, 1943.
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Evidently g0 = ge in the open interval -w < p< . Hence ge(p, A) is the

limiting case of the envelope of the internal excitation coefficients as M
is increased indefinitely. The end excitation coefficients which -- as has
been observed before -- do not conform to the envelope, become the im-
pulse functions at the two ends of the distribution.

IV. AN EXAMPLE

It is rather natural to assume that the end elements of a Dolph array
of a large number of elements should coincide with the end points of the
envelope function if the two are superposed. (This must happen as M--*cD.)
Proceeding on this basis the envelope function g e(p, A) for a 40 db side lobe

ratio has been calculated and is plotted in Figure 2; calculated values of
the excitation coefficients for a 24 element Dolph array are displayed on
the same graph for comparisor. The excitation coefficients were normal-
ized so as to be equal to the envelope at the center of the array and the
close agreement between the envelope and the calculated excitation coef-
ficients in other parts of the graph should be noted.
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